University
of Southern
California

Architectures for Agents that Track
. Other Agents
in Multi-agent Worlds

Milind Tambe and Paul S. Rosenbloom

USC/Information Sciences Institute

May 1996
ISI/RS-96-440

DTIC QUALITY INSPECTED @

Doz | 9060024 049

INFORMATION

SCIENCES
INSTITUTE 310/822-1511
4676 Admiralty Way/Marina del Rey/California 90292-6695




- THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC
- CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.



FORM APPROVED
OMB NO. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exiting data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimated or any

other aspect of this collection of information, including suggestings for reducing this burden to Washington Headquarters Services, Directorate for Information Operations

‘aﬁd :{epc:rts, I1J %1 go.ls%f;erson Davis highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188),
ashington, A

3. REPORT TYPE AND DATES COVERED
Research Report

2. REPORT DATE

May 1996

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ARPA /ASTO:
N00014-92-K-2015

Architectures for Agents that Track Other Agents in Multi-agent Worlds

6. AUTHOR(S)

Milind Tambe and Paul S. Rosenbloom

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATON

REPORT NUMBER
USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695 ISI/RS-96-440
9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARPA/ ASTO
3701 N. Fairfax Drive
Arlington, VA 22203-1714

Naval Research Laboratory
4555 QOverlook Ave., SW
Washington, D.C. 20375-5000

11. SUPPLEMENTARY NOTES
Also appears in M. Wooldridge, J. Muller, and M. Tambe (eds.), Intelligent Agents, Volume II: Lecture
Notes in Artificial Intelligence 1037, Springer Verlag, Berlin, 1996.

12A. DISTRIBUTION/AVAILABILITY STATEMENT

UNCLASSIFIED/UNLIMITED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In multi-agent environments, an intelligent agent often needs to interact with other individuals or groups of agents

to achieve its goals. Agent tracking is one key capability required for intelligent interaction. It involves monitoring the observable actions of
other agents and inferring their unobserved actions, plans, goals and behaviors. This article examines the implications of such an agent track-
ing capability for agent architectures. It specifically focuses on real-time and dynamic environments, where an intelligent agent is faced with
the challenge of tracking the highly flexible mix of goal-driven and reactive behaviors of other agents, in real-time. The key implication is that
an agent architecture needs to provide direct support for flexible and efficient reasoning about other agents' models. In this article, such support
takes the form of an architectural capability to execute the other agent's models, enabling mental simulation of their behaviors. Other architec-
tural requirements that follow include the capabilities for (pseudo-) simultaneous execution of multiple agent models, dynamic sharing and
unsharing of multiple agent models and high bandwidth inter-model communication.

We have implemented an agent architecture, an experimental variant of the Soar integrated architecture, that conforms to all of these require-
ments. Agents based on this architecture have been implemented to execute two different tasks in a real-time, dynamic, multi-agent domain.
The article presents experimental results illustrating the agents' dynamic behavior.

15. NUMBER OF PAGES

18

14. SUBJECT TERMS

agent architectures, agent modeling, multi-agents, real-time

16. PRICE CODE

17. SECURITY CLASSIFICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102




GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)

and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of ...; To be
published in... When a report is revised, include

a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, “Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)




Architectures for Agents that Track Other Agents in
Multi-agent Worlds

Milind Tambe and Paul S. Rosenbloom

Information Sciences Institute and Computer Science Department
University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292
Email: {tambe, rosenbloom}@isi.edu
WWW: http://fwww.isi.edu/soar/{tambe,rosenbloom}

Abstract. In multi-agent environments, an intelligent agent often needs to inter-
act with other individuals or groups of agents to achieve its goals. Agent tracking
is one key capability required for intelligent interaction. It involves monitoring the
observable actions of other agents and inferring their unobserved actions, plans,
goals and behaviors. This article examines the implications of such an agent
tracking capability for agent architectures. It specifically focuses on real-time and
dynamic environments, where an intelligent agent is faced with the challenge of
tracking the highly flexible mix of goal-driven and reactive behaviors of other
agents, in real-time. The key implication is that an agent architecture needs to
provide direct support for flexible and efficient reasoning about other agents’
models. In this article, such support takes the form of an architectural capability
to execute the other agent’s models, enabling mental simulation of their behaviors.
Other architectural requirements that follow include the capabilities for (pseudo-)
simultaneous execution of multiple agent models, dynamic sharing and unsharing
of multiple agent models and high bandwidth inter-model communication.

We have implemented an agent architecture, an experimental variant of the Soar
integrated architecture, that conforms to all of these requirements. Agents based
on this architecture have been implemented to execute two different tasks in a
real-time, dynamic, multi-agent domain. The article presents experimental results
illustrating the agents’ dynamic behavior.

This paper has appeared in Intelligent Agents, Volume II: Lecture notes in
Artificial Intelligence 1037, edited by Wooldridge, M., Muller, J., and Tambe,
M., Springer Verlag Publishers, Berlin,1996




1 Introduction

In a multi-agent environments, intelligent agents often need to interact with each other,
either collaboratively or non-collaboratively, to achieve their goals. Many of these multi-
agent domains are real-time and dynamic, requiring the interaction to be highly flexible
and reactive, as well as real-time. Examples of such environments include applications
in arenas such as education, entertainment, and training. For instance, in the education
arena, intelligent tutoring systems need to interact with students in real-time[32]. In
the arena of entertainment, recent work has focused on real-time, dynamic interactivity
among multiple agents within virtual reality environments[5, 12, 17]. Similarly, in the
arena of training, there is arecent thrust on dynamic, real-time interactive simulations{24,
26, 33]. In these simulations, humans may interact with tens or hundreds of intelligent
agents, as they participate in realistic traffic environments that simulate traffic jams
and pedestrians[8], or air-traffic control environments that simulate multiple aircraft
on airfields[19], or large-scale combat environments that simulate friendly and enemy
troops[30]. Such real-time interaction is also seen in robotic environments, particularly
in work such as robotic collaboration without communication[16].

In all these environments, agent tracking is a key capability required for intelligent
interaction. It involves monitoring other agents’ observable actions and inferring their
unobserved actions or high-level goals, plans and behaviors. This capability is important
in both collaborative and non-collaborative settings. Certainly, in non-collaborative
settings, it is usually not in a competitor’s interest to directly communicate its goals and
plans to an agent — the agent thus needs to infer them to compete effectively. Even in
collaborative settings, such communication may not be possible due to the cost or the
risk involved, the lack of a common communication language, or inexpressivity of the
common communication language; creating a need for an agent tracking capability for
effective collaboration[14].

This agent tracking capability is closely related to plan recognition, which involves
recognizing agents’ plans based on observations of their actions[15, 2, 23]. One key
difference is that plan-recognition efforts typically focus on tracking a narrower (plan-
based) class of agent behaviors, as seen in static, single-agent domains. In particular,
they assume that agents rigidly follow plans step-by-step. Agent tracking, in contrast,
can involve tracking a broader mix of goal-driven and reactive behaviors. This capability
is important for dynamic environments where agents do not rigidly follow plans.

This article discusses the implications of such an agent tracking capability for
agent architectures — specifically, ways in which an architecture may facilitate agent
tracking.! Why seek architectural support for this capability? There are at least two
key reasons. First, agent tracking is a ubiquitous capability in multi-agent worlds.
As discussed above, irrespective of whether agents are engaged in collaborative or
competitive activity, agent tracking is essential to their interaction. It would be more
efficient to provide architectural support for such a capability. Second, recent research in
the fields of cognitive and developmental psychology has focused on the theory of mind
hypothesis[4]. This hypothesis suggests that an innate (neurocognitive) capability has

! This article is basedon our previous work on agent tracking[28, 25]. However, it focuses mainly
on architectural implications of that work, rather than the tracking capability itself.



evolved to enable humans to ascribe mental states to others[3]. This research appears
to indicate that automated intelligent agents would be well-served by an architectural
capability to reason about other agents’ mental states.

The article begins with an analysis (in Section 2) of some of the key requirements
for agent tracking in real-time, dynamic environments. This analysis is based on tasks
in a real-world, multi-agent environment and assumes that an agent is situated in the
environment, as it tracks other agents while simultaneously interacting with them. Key
requirements revealed by this analysis include:

1. Tracking other agents’ highly flexible mix of goal-driven and reactive behaviors.

2. Recursively tracking its own actions from the perspective of other agents, so as to
understand their impact on the other agents’ behaviors.

3. Tracking groups of other agents, possibly acting in coordination.

4. Simultaneously tracking and reacting to other agents’ actions.

5. Tracking other agents’ activities in real-time, while resolving ambiguities.

Section 3 presents an approach to agent tracking that addresses the first item above:
tracking flexible and reactive behaviors. The approach is based on the mode! tracing
technique used in intelligent tutoring systems (ITS) for tracking student actions[1, 32].
To track the activities of a student, an ITS executes a model of that student to generate
predictions. Tracking proceeds by matching these predictions with actual observations.
However, as with plan recognition, previous ITS work has primarily focused on static
environments.2 This article describes the application of model tracing in real-world
dynamic tasks, where agents exhibit a complex mix of goal-driven and reactive behav-
iors. Section 3 illustrates that in tracking such behaviors, one key implication for agent
architectures is the capability to execute models of other agents. That is, an architecture
must not only generate an agent’s own behaviors; it must, in addition, execute models
of other agents.

Section 4 discusses the architectural implications of the next two issues from the
above list: recursive agent tracking and agent-group tracking. Recursive agent tracking
requires an architecture to support the execution of the agent’s recursive model, i.e., an
agent’s model of some other agent’s model of itself (the original agent). For example,
to recursively track an agent D, its architecture needs to be capable of executing its
(D’s) model of some other agent’s model of itself (D). Similarly, tracking agent-groups
requires the architecture to be capable of execution of an agent’s models of all of
the different agents in a group. Unfortunately, the recursive tracking of a large group
of agents can involve the execution of a large number of models. In particular, the
presence of N other agents and r levels of recursively nested models may create a need
for tracking an exponential number (O(N")) of models. Since this computational cost
is unacceptable, especially in real-time environments, an architecture needs to support
heuristic optimizations such as model sharing to reduce the number of models it has to
execute. Thus, an agent architecture may need the capability to share multiple similar

2 There are some recent ITS applications that have ventured into dynamic environments, e.g.,
REACTI13], but they still primarily rely upon a plan-driven tracking strategy, dealing with the
dynamic aspects as exceptions. '



models. Such shared models may need to be dynamically unshared when they grow
dissimilar.

Section 5 discusses the fourth item on the list: simultaneous tracking and react-
ing. This requires an architecture to be capable of (pseudo-)simultaneous execution of
multiple models, essentially to simulate the simultaneity in agents’ actions in the world.

The fifth and final item on the above list is one of real-time tracking with accurate
resolution of ambiguities. This article will only briefly touch upon this last item. Previ-
ous model tracing and plan recognition systems have certainly dealt with the problem of
ambiguity resolution — although, many of these solutions are not necessarily intended
for real-time environments[28, 27]. Elsewhere, we have presented an approach called
RESC (for REal-time Situated Commitments), that builds upon the technique from Sec-
tion 3, and aims to resolve ambiguities in real-time{28]. The architectural implications
of agent tracking described in this article are not dependent on RESC. Nonetheless, we
briefly describe RESC in the following as an example technique for real-time ambiguity-
resolution: RESC’s situatedness is based on its ability to continuously track the other
agents’ actions in the current world state. Despite the ambiguities it faces, RESC quickly
commits to a single interpretation of the other agents’ on-going actions — there is no ex-
haustive examination of alternatives. These commitments constrain future tracking and
interpretation. Thus, commitments in RESC play the same constraining role in tracking,
as they do in constraining planning in some plan-based architectures, such as IRMA[6).
With additional information becoming available later, these commitments may turn out
to be inappropriate. In such cases, the interpretations are revised in real-time, via an
on-line repair mechanism. RESC’s real-time character derives from its situatedness, its
quick commitments, and its on-line repair.

Section 6 presents an implementation of an agent architecture, a variation on the
Soar integrated architecture[18, 22], that conforms to the requirements outlined above.
In our descriptions, we assume some familiarity with Soar’s problem-solving model,
which involves applying operators to states to reach a desired state. Section 6 also
presents experimental results illustrating the dynamic behavior of agents based on this
architecture. Section 7 presents related work, and Section 8 concludes.

2 Agent Tracking in a Real-world Setting

Our investigation of agent tracking is based on an on-going effort to build intelligent
pilot agents for a synthetic combat environment[26]. This environment is based on a
commercially developed simulator called ModSAF([7], which has already been used
in an operational military exercise involving human participants. ModSAF provides
a synthetic yet real-world setting for studying a broad range of challenging issues in
agent tracking. Given the real-world nature of this environment, we expect that lessons
learned here from analysis of agent tracking will be broadly applicable to other real-
time, dynamic multi-agent environments, such as the ones discussed at the beginning of
Section 1.

For an illustrative example of agent tracking in this combat simulation environment,
consider first the air-to-air combat scenario in Figure 1, involving fighter jets. The pilot
agent L in the light-shaded aircraft is engaged in combat with pilot agents D and E in



the dark-shaded aircraft. Since the aircraft are far apart, L can only see its opponents’
actions on radar (and vice versa). In Figure 1-a, L observes its opponents turning their
aircraft in a coordinated fashion to a collision course heading, i.e., with this heading,
they will collide with L at the point shown by x. Since the collision course maneuver
is often used to approach one’s opponent, L infers that its opponents are aware of its
(L’s) presence, and are trying to get closer. Given a highly hostile environment, L may
also infer that opponents are closing in to fire their missiles. However, L has a missile
with a longer range, so L reaches its missile range first. L then turns its aircraft to point
straight at D’s aircraft and fires a radar-guided missile at D (Figure 1-b). Subsequently, L
executes a 35° fpole turn away from D’s aircraft (Figure 1-c), to provide radar guidance
to its missile, while slowing its rate of approach to the enemy aircraft.

LA G4k i G bl 4 1

@ ®) ) (@)

Fig. 1. Pilot agents D and E are engaged in combat with L. An arc on an aircraft’s nose shows its
turn direction.

While neither D nor E can observe this missile on their radar, they do observe L’s
pointing turn followed by its fpole turn. They track these to be part of L’s missile firing
behavior, and infer a missile firing. Therefore, they attempt to evade this missile by
executing a 90° beam turn (Figure 1-d). This causes their aircraft to become invisible
to L’s radar. Deprived of radar guidance, L’s missile is rendered harmless. Meanwhile,
in Figure 1-d, L tracks its opponents’ coordinated beam turn (even while not seeing the
complete turn). L then prepares counter-measures in anticipation of the likely loss of
both its missile and radar contact.

Thus, the pilot agents need to continually engage in agent tracking. They need to
track their opponents’ actions, such as turns, and infer unobserved actions and high level
goals and behaviors, such as the fpole, beam or missile firing behaviors. Agent tracking
in this real-time, dynamic, multi-agent environment can be seen to raise the key issues
outlined in Section 1. More specifically:

1. Tracking flexible and reactive behaviors: Pilot agents must track other agents’
highly flexible mix of goal-driven and reactive behaviors. For instance, in Figure 1,
pilot agents need to track each other’s continuous reactions. Indeed, if D and E had
executed a 90° pre-emptive beam turn prior to Figure 1-b, L would have needed to
track that and react by not going through with its missile firing.

2. Recursive agent tracking: Pilot agents continually influence each other’s behaviors,
creating a need for recursive tracking. For instance, in Figure 1-d, to successfully
track D’s beam, L must also recursively track how D is likely to be tracking L’s
own actions — that D is aware of L’s missile firing, and it is beaming in response.

3. Agent group tracking: An agent may need to track coordinated (or uncoordinated)



activities of a group of agents, e.g., as just seen, L needed to track two coordinated
opponents.

4. Simultaneousacting andtracking: As participants in their environment, pilot agents
must track opponents’ maneuvers and simultaneously react appropriately. For in-
stance, D and E need to track L’s behaviors, as they maneuver their own aircraft.

5. Real-time ambiguity resolution: Pilot agents need to resolve ambiguities in other
agent’s actions in real-time. To survive in the scenario presented in Figure 1, D and
E need to correctly interpret L’s missile firing in real-time, although alternative
interpretations of L’s turns are possible.

Many of these same challenges also come up in other tasks in the combat simulation
environment. For example, one such task involves a team of helicopters trying to
follow a flight plan, as shown in Figure 2-a. Here, as a participant in the team activity,
a subordinate may be required to track the leader (in the front) and possibly other
members, to detect distinct changes in their method of flight, e.g., following the ground
contour, flying nap-of the earth, or flying steady altitude[29], or to avoid collisions with
teammates, especially when they are about to break formation. At a specified (holding)
point (shown by x), the leader and other members may start hovering, an indication to all
the teammates that they should wait at that point. The leader then pulls ahead, examines
the forward area (Fig 2-b), and returns to its teammates to bring them forward. Here, its
return may indicate to the teammates that they should get ready to start following (Fig
2-¢). The leader may not be able to verbally communicate all such information, since the
mission may require radio silence to avoid detection by enemy forces. It then becomes
essential for an intelligent agent to infer relevant information (e.g., that the team has
reached the holding area) from observation of the actions of individual team members.
Thus, agent tracking in this context of helicopters also raises some of the issues outlined
above such as tracking groups of agents, tracking their flexible and reactive behaviors,
as well as simultaneous tracking and acting.

(@) (b) (c)

Fig. 2. A simulated combat scenario involving a team of helicopters.

3 Tracking Flexible and Reactive Behaviors

Our basic approach for tracking an agent’s actions is to execute a model of that agent,
while matching the model’s predictions against the agent’s actual actions. To track an




agent’s behaviors in a dynamic environment, it is necessary to be able to execute that
agent’s model in a flexible fashion — the execution must be responsive to the dynamic
changes in the world situation. One key observation here is that the agent doing the
tracking is itself a participant in the environment: it is capable of the rich flexible and
reactive behaviors required in this environment. That is, its architecture can execute such
behaviors in this environment. Therefore, this architecture may be reused to execute a
model of another agent, to allow for flexible and reactive model execution. There is
thus uniformity in an agent’s generation of its own behaviors, and its tracking of other
agent’s behaviors.

To understand the above in concrete terms, consider the fighter-jet air-combat sce-
nario in Figure 1. Here, D may track its opponent L’s actions, by utilizing uniformity
in acting and tracking. (The following description assumes agents implemented in the
Soar architecture, although the key concept of uniformity in acting and tracking is not
specific to Soar.) D’s internal state and operator hierarchy are as depicted in Figure 3-a.
D’s internal state maintains information regarding mission specifications, and receives
input from its radar sensor. Based on the state, D makes appropriate operator selec-
tions to generate the desired behavior in its external environment. Here, it has selected
execute-mission as the top operator. Since the termination condition of this operator —
completion of D’s mission — is not yet achieved, a subgoal is generated. The intercept
operator is selected in that subgoal. In the following subgoal, the employ-missile opera-
tor is selected. The subgoal after that applies get-firing-position to get to a missile firing
position. Skipping down to the final subgoal, maintain-heading enables D to maintain
heading, as seen in Figure 1-b. The operators in Figure 3-a used for generating D’s own
actions will henceforth be denoted with the subscript D, e.g., interceptpy. Operatorp
will denote an arbitrary operator of D. Statey will denote the state. Together, statep)
and the operatory, hierarchy may be considered as D’s model of its present self, referred
to as modely.

Modelpy supports D’s flexible/reactive behaviors via its embedding within Soar;
and in particular, via two of Soar’s architectural features: (i) a decision procedure that
supports flexibility by integrating all available knowledge about preferences among
candidate operators before deciding to commit to a single operator; (ii) termination
conditions for operators that support reactivity by terminating operators in response
to the given situation[22]. These architectural features get reused when other agents’
models are executed on the same architecture. To illustrate this re-use, we assume for
now that D and L possess an identical set of maneuvers.® Thus, D uses a hierarchy such
as the one in Figure 3-b to track L’s behaviors. Here, the hierarchy represents D’s model
of L’s current operators in the situation of Figure 1-b. These operators are denoted with
the subscript DL. The operatoryy, hierarchy, along with the statepyy, that goes with
it, constitute D’s model of L or modelpyy,. Modelpy, obviously cannot influence L’s
actual behavior. For instance, in the final subgoal D has applied the start-&-maintain-
turnpy1, operator to stateryy,. This operator cannot cause L to turn. It predicts L’s turn
and matches the prediction against L’s actual action. Thus, if L starts turning to point

3 This is not a necessary condition. The main requirement is for a reasonably accurate model of
the other agent’s possible maneuvers. Bounded deviations from this model, e.g., differences in
action duration, as well as in the preferences among possible actions can be addressed[28].



Operator, Hierarchy Operator oL Hierarchy
| EXECUTE-MISSION | [ EXECUTE-MissION |
roLLow-FLoT-PLAN | (FoLLoW-FLGT PLAN
| INTERCEPT , IFOLLOW—FLGI' —PLAN | I INTERCEPT I | |
r\\ L _RUN-AWAY __ | r~\‘ L _RUN-AWAY __ |
———— | —_y T [t
EMPLOY-MISSILE | |'SEARCH-&-ACQUIRE) [ EMPLOY-MISSILE | {SEARCH—&-ACQUIRE}
=_ | CHASE-OPPONENT | ~~__ | CHASE-OPPONENT |
[ GET-FIRING-POSTIN | T~ [FINAL-MISSL-MANVR | S~
S~ ~ === — ~ - -=
~ - S~ -
[ ACHIEVE-PROXIMITY | ~~ [ POINT-AT-TARGET | ~~_.
~— - ~ ~ - - -
[MAINTAIN-HEADING |~~~ [START-MAINTN-TURN | ~~—..
’7 STATE J | STATE,, ‘
@) (b)

Fig. 3. (a) Modelp, (b) Modelpr. Solid lines indicate the actual operator hierarchy; dashed lines
indicate unselected alternatives, e.g., run-away is an alternative to infercept.

at D’s aircraft, then there is a match with modelpyy,’s predictions. Given this match, D
now believes L is turning to point at its target, (i.e., D), to fire a missile, as indicated by
other higher-level operators in the hierarchy. D tracks L’s behaviors in this manner by
continuously executing the operatorpyy, hierarchy, and matching it with L’s actions.
Thus, D’s architecture, in addition to generating its own behaviors via execution
of modelpy, gets reused to track other agents’ behaviors via execution of models such
as modelpyt,. This provides the requisite functionality for flexible and reactive model
execution. In particular, operatorp) and operatorpyy, are selected and terminated in the
same flexible manner. For instance, as statepyy, changes, an operatorpyy, terminates
if its termination conditions are satisfied, and new operatorspyy, get selected. Thus,
execution of modelpyy, can be sensitive to dynamic changes in the world situation.

4 Recursive Agent and Agent-Group Tracking

The approach presented in the previous section may be extended in a straightforward
manner for both recursive agent tracking and agent-group tracking. The key is to execute
appropriate agent models[25]). Recursive tracking requires the execution of a recursive
model. Consider, for instance, D’s recursive tracking in Figure 1. D can recursively
track its own actions from L’s perspective, by executing modelpy 1, p (D’smodel of L’s
model of D). Modelpy g, consists of a statepyy 1y and an operatorpy,p hierarchy. D
tracks modelpyy,p by matching operatorpyy, predictions with its own actions. Thus,
if D were to engage in a beampy after a missile firing, it would be D’s recursive tracking
of beampy1,p Which would indicate a missile evasion maneuver to modelpyy,. Further
nesting of recursive models could lead to modelpy,p1,, modelpy,prL D> etc.




Tracking a groups of agents requires the execution of the models of the different
agents in the group. Thus, to track a group of opponents in Figure 1, D can execute
its models of different individual opponents. For instance, suppose a second opponent,
J, joins L in attacking D and E. D can track J’s actions just as it tracked L’s actions,
by executing new models, such as modelp y and modelpy 3. In addition, it may also
execute others such as modelp yy,, modelpy,3, modelpy,y, and so on. These models
may be important to track J’s interactions with L.

Unfortunately, this scheme points to an exponential growth in the number of models
that an agent needs to execute. In general, for N other agents, and r levels of nesting
the agent may need to execute: Y i_, N¢ models (which is r for N = 1, but A=l
for N > 1). This is clearly problematic given the likely scale-up in N. In particular,
given its limited computational resources, the agent may be unable to execute relevant
operators from all its models in real-time, possibly jeopardizing its very survival.

Thus, optimizations involving some form of selective tracking appear necessary for
real-time execution of these models. Yet, such selectivity should not cause an agent to be
completely ignorant of critical information that a model may provide (e.g., a pilot agent
should not be ignorant of an opponent’s missile firing). One optimization that enables
such selective tracking is model sharing[QS]. The overall motivation is that if there is a
modely that is near-identical to a modelx, then modely’s states and operators can be
shared with those of modelx. Thus, modely is tracked via the execution of modelx,
reducing the tracking effort in half. Modely may be dynamically unshared from modelx
if it grows significantly dissimilar. Thus, a model is selectively executed based on its
dissimilarity with other models.

For an illustration of this optimization, consider modelp) and modelpy, 1y (based on
the situation in Figure 1). The operatorpy hierarchy can be shared with the operatorpy, p
hierarchy since the two are often identical. Furthermore, information in stateyy, such as
radar input, is shared with statepy 1,1y - Thus, D essentially executes operators from only
one model, instead of two.*

There are basically two categories of models that may be shared in this fashion:

1. Models of distinct agents within a group: Agents that are part of a single group
may act in a coordinated fashion — executing similar behaviors — providing an
opportunity for model sharing. Thus, if a group of agents, say L and J, together
attack D in Figure 1, modelpy, and modelpy 3 may possibly be shared. In fact, if
models of all of the agents in a group are shared, an agent may execute only one
model for the entire group.

2. Recursive models of a single agent at » > 3: Models of a single agent across a
recursion hierarchy are likely to be near-identical to each other, and thus they form
the second category of models that may allow sharing. For instance, modelpyy
may be shared with modelyy. If all such models are shared, an agent may need to
track no models at » > 3.

Thus, sharing could provide substantial benefits in tracking. In the best case, an
agent may recursively track a group of N agents with just one or two models instead of

4 If there are some unsharable secret aspects of statep, e.g., if D’s missile range is a secret, then
it will be maintained on statep, but it will not be shared with statepLp.



O(NT) models. An agent’s architecture should thus provide support for model sharing.
In addition, the architecture should allow for unsharing of models when they grow
dissimilar. For instance, modelpy1, and modelyy y may be initially shared, but they may
need to be unshared should L and J separate out and attack from two sides.

5 Simultaneous Acting and Tracking

The need for simultaneous acting and tracking implies that an architecture should allow
parallel execution of an agent’s own model (its behaviors) and models of other agents.
If an architecture does not directly support such parallelism, it may simulate that by
interleaving the execution of multiple models. One other important implication of this
simultaneity is that an architecture should facilitate high-bandwidth communication
among agent models. In particular, the simultaneity is often due to the very close
interaction among agents — their behaviors continuously influence each other. Thus,
changes in behaviors have to be continuously communicated among models. Indeed,
in Figure 1, changes in aircraft maneuvers, and their effect on geometry, have to be
continuously communicated among agent models[27]. An agent architecture should
facilitate such high bandwidth inter-model communication.

6 Implementation

Previous sections have outlined four key requirements for agent architectures to facilitate
real-time, dynamic agent tracking. In particular, an agent architecture should have the
following capabilities:

1. Execute multiple agent models (in addition to the agent’s own behaviors) — these
models may be the agent’s models of other agents, or recursive models.

2. Dynamically share and unshare multiple models.

3. Execute multiple models in a (pseudo-)simultaneous fashion.

4. Support high-bandwidth inter-model communication.

We have implemented a variant of the Soar integrated architecture[18] that conforms
to these requirements. This variant is actually implemented in terms of Soar rules, so
that it forms an interpretive layer on top of Soar. It simulates parallelism in the execution
of multiple models (and the agent’s own behaviors) via interleaved model execution.
We have implemented pilot agents for fighter jets and helicopters (see scenarios in
Section 2) based on this architecture.® In the following, these agents will be referred as
pilottracker agents. Each pilot'™°*¢™ agent contains about 1250 rules.

To attempt to evaluate the performance of these agents, we have run the pilotstracker
agents in several fighter-jet combat simulation scenarios outlined by our human experts.
Figure 4 shows a pilot!™¢°¥¢™’s dynamic behavior — the dynamic pattern of time spent
in various activities — as it intercepts a single opponent. The X-axis plots time in

5 These agents are themselves variations of agents, based on Soar, that were developed for this
environment[26, 29].




simulation cycles. Each of these cycle is approximately 66 milliseconds, and the X-
axis shows about 3000 cycles. The Y-axis plots the division of architectural activities
into cycles for tracking other agent’s activities, cycles for the agent’s own actions, and
wait cycles (in which the pilot'"#¢*¢" waits for the aircraft to complete a turn, or to
reach a specified distance from an opponent, without mental activity on its part). The
figure shows that much of the initial time is spent waiting. This is because the aircraft
are far apart and are flying straight towards each other, with little influence on each
other’s action. Furthermore, since low-level aircraft control is handled by the simulator,
the pilot*r¢°*¢" agent is not mentally occupied. The amount of time spent acting and
tracking increases as time passes — basically, the aircraft get closer to each other, and
exert an increasing influence on each other’s activities.

T T Y Y T T
Tracking cycles - & e o ®O & COWEOSNO K& O o
Self activity cycles - @ * o wo o e * 0 o b
Wait cycles
' ’ L 2 L "
500 1000 1500 2000 2500 3000

Time in simulation cycles —>

Fig. 4. Dynamic agent behavior in one-vs-one air-combat simulation for a complete engagement.
Tllustrates simulation cycles devoted by the architecture to tracking, acting, and waiting. Note that
one simulation cycle is devoted to one activity.

The key point to note in Figure 4 is that the architecture needs to (and is able to)
continuously switch back and forth between acting and tracking activities. Figure 5
zooms in on the segment between cycles 2300-2400 from the scenario in Figure 4. It
provides a clearer picture of the continuous interleaving between acting and tracking
cycles. Further evidence for such interleaving is seen in Figure 6. It shows 100 cycles
from another scenario, where a pilot!"*°¥¢" agent is engaged in combat with two op-
ponents, not just one. In this scenario, the architecture devotes even more of its time
to tracking. The continuous interleaving in these two scenarios is not a coincidence —
each tracking cycle provides an agent information about its opponent, and it quickly
reacts given this new information.

In both the scenarios above, the pilot'"°*¢™ agent can accurately track its opponents’
actions, in time. Thus, even if the pilot*"2°*¢” agent makes an initial incorrect inference,
it does make a timely correction — to react appropriately.



Tracking cycles | eo ©000 o o

Self activity cycles | * 500 %0 OGO o L
Wait cycles 4000 080 900N
2300 2320 2340 2360 2380 2400

Time in simulation cycles ~>

Fig. 5. Dynamic agent behavior in one-vs-one air-combat simulation for 100 cycles.

Y T T v
Tracking cycies © 00 0O %0 0 o e
Self activity cycies 0000 © 6030000000 & O © eoo 00 L
Walt CyClas 400000a000000000000090 0 N GACOP  SAOOITROINOIORIONCIP
. : " 2
1650 1670 710 1730 1750

1690 1
Time in simulation cycles -->

Fig. 6. Dynamic agent behavior in one-vs-two air-combat simulation for 100 cycles.

7 Related Work

There are at least three main areas of related work. The first one is agent architectures.
In this area, Rao’s work on reactive plan recognition[20] based on the PRS/dMARS
architecture[10] is closest in spirit to the work reported here. The underlying concept is
to extend agent architectures, specifically the PRS architecture, to enable it to execute
models of other agents in service of reactive recognition. The resulting architecture
can execute an agent’s own behavior while simultaneously executing models of other
agents in its environment. The similarity goes beyond the proposed architecture —
in fact, simulated air-combat is one proposed area of application of this work[21].
While Rao has not focused on recursive agent- and agent-group tracking, it should be
possible to extend his work to address those, and apply optimizations such as model
sharing discussed in this article. While there are some important differences in the
detailed techniques employed — specifically for real-time ambiguity resolution —
this basic convergence of architectural extensions is indeed encouraging. In fact, there
are at least two other architectures where similar changes have been implemented in
service of agent tracking. Hayes-Roth et al. report that their recent work on multi-




agent collaborative improvisation has led to similar extensions to their BB1 agent
architecture[12]. Specifically, the architectural mechanisms used to plan, control and
monitor an agent’s own behaviors are reused to monitor, interpret, and predict its
partner’s behaviors. Ferguson’s work on the TouringMachine architecture — focused
on agents in dynamic, multi-agent environments — also involves an explicit modeling
layer for tracking other agents[9].

A second area of related work is research specifically focused on agent modeling
and plan-recognition. Section 1 has discussed some of this work. In addition, some
formal approaches for agent modeling, and in particular for recursive agent modeling,
are also being investigated[11]. Vidal and Durfee attack the problem of combinato-
rial explosion in such recursive modeling, and propose a formal approach to tame the
combinatorics[31]. Understanding the relationship of these formal approaches to ap-
proaches inspired by practical applications, as in the work presented in this article, is a
key area for future research.

A third area of related work, also mentioned in Section 1, is research in develop-
mental and cognitive psychology focused on the human ability to ascribe mental states
to people: beliefs, desires, and intentions[4]. Baron-Cohen argues that specific neu-
rocognitive mechanisms have evolved to facilitate such mental state ascription, to aid in
social understanding, behavioral prediction, social interaction and communication[3].
Selective impairment of these capabilities leads to autism[4]. Such autistic individuals
are mindblind — their world is devoid of mental things. The implication of this research
for Al architectures would appear to be that these architectures should — as is the case
with the human cognitive architecture — facilitate agents’ ability to reason about the
mental states of other agents, or risk agent mindblindess.

8 Conclusion

This article argues that if agents are to successfully inhabit complex, dynamic social
worlds, they must obtain architectural support for agent tracking — an important ca-
pability required for agent interactions. Key implications of agent tracking for agent
architectures include the ability to execute models of other agents, dynamic sharing and
unsharing of multiple models, simultaneous (or interleaved) execution of these models,
and high bandwidth inter-model communication. We have built an agent architecture, a
variant of the Soar integrated architecture, that conforms to these requirements. Agents
based on this architecture have been developed for the dynamic, real-time, multi-agent
environment of battlefield simulation. While synthetic, this is nonetheless a real-world
enviroment, already used in a large-scale operational military exercise[26]. With this
variant architecture at its base, agents are capable of successfully tracking others in this
challenging environment.

Among issues for future work, we are looking into generalizing the lessons learned
here to other real-time comprehension tasks, where the input may not necessarily be
other agents’ actions. One such task is natural language dialogue, where an agent may
need to infer other agent’s goals in real-time based on its speech, or language. This will
hopefully lead to an improved understanding of the architectural support required for
general comprehension capabilities.



9

Acknowledgement

This research was supported under subcontract to the University of Southern Califor-
nia Information Sciences Institute from the University of Michigan, as part of contract
N00014-92-K-2015 from the Advanced Systems Technology Office (ASTO) of the Ad-
vanced Research Projects Agency (ARPA) and the Naval Research Laboratory (NRL).

References

1

2.

10.

11.

12.

13.

14.

15.

16.

. J.R. Anderson, C. F. Boyle, A. T. Corbett, and M. W. Lewis. Cognitive modeling and

intelligent tutoring. Artificial Intelligence, 42:7-49, 1990.

J. Azarewicz, G. Fala, R. Fink, and C. Heithecker. Plan recognition for airborne tactical

decision making. In Proceedings of the National Conference on Artificial Intelligence, pages

805-811. Menlo Park, Calif.: AAAI press, 1986.

. S. Baron-Cohen. MindBlindness. MIT Press/AAAI Press, Cambridge, MA, 1995.

. S. Baron-Cohen, H. Tager-Flusberg, and D. Cohen. Understanding other minds: perspec-
tives from Autism. Oxford University Press, Walton Street, Oxford, 1993.

. J. Bates, A. B. Loyall, and W. S. Reilly. Integrating reactivity, goals and emotions in a broad
agent. Technical Report CMU-CS-92-142, School of Computer Science, Carnegie Mellon
University, May 1992.

. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical rea-
soning. Computational Intelligence, 4(4):349-355, 1988.

. R. B.Calder,J. E. Smith, A. J. Courtemanche,J. M. F. Mar, and A. Z. Ceranowicz. Modsaf
behavior simulation and control. In Proceedings of the Conference on Computer Generated
Forces and Behavioral Representation, 1993.

. J. Cremer, J. Kearney, Y. Papelis, and R. Romano. The software architecture for scenario
control in the Jowa driving simulator. In Proceedings of the Conference on Computer
Generated Forces and Behavioral Representation, 1994.

. L A. Ferguson. TouringMachines: An architecture for dynamic, rational, mobile agents.

PhD thesis, University of Cambridge, 1992.

M. P. Georgeff and A. L. Lansky. Procedural knowledge. Proceedings of the IEEE special
issue on knowledge representation, 74:1383-1398, 1986.

P. Gmytrasiewicz. On reasoning about other agents. In M. Wooldridge, J. Muller, and
M. Tambe, editors, Intelligent Agents, Vol Il — Proceedings of the 1995 workshop on Agent
theories, Architectures and Languages (ATAL-95), Lectures Notes in Articificial Intelligence.
Springer-Verlag, Heidelberg, 1996. (In this volume).

B. Hayes-Roth, L. Brownston, and R. V. Gen. Multiagent collaobration in directed improvi-
sation. In Proceedings of the International Conference on Multi-Agent Systems (ICMAS-95),
1995.

R. Hill and W. L. Johnson. Situated plan attribution for intelligent tutoring. In Proceedings
of the National Conference on Artificial Intelligence. Menlo Park, Calif.: AAAI press, 1994.
M. Huber and E. Durfee. Deciding when to commit to action during observation-based co-
ordination. In Proceedings of the International Conference on Multi-agent systems (ICMAS),
1995.

A. Kautz and J. F. Allen. Generalized plan recognition. In Proceedings of the National
Conference on Artificial Intelligence, pages 32~37. Menlo Park, Calif.: AAAI press, 1986.
Y. Kuniyoshi, S. Rougeaux, M. Ishii, N. Kita, S. Sakane, and M. Kakikura. Cooperation
by observation: the framework and the basic task pattern. In Proceedings of the IEEE
International Conference on Robotics and Automation, May 1994.




17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

P. Maes, T. Darrell, B. Blumberg, and S. Pentland. Interacting with animated autonomous
agents. In J. Bates, editor, Proceedings of the AAAI Spring Symposium on Believable Agents,
1994.

A. Newell. Unified Theories of Cognition. Harvard Univ. Press, Cambridge, Mass., 1990.
K. Pimentel and K. Teixeira. Virtual reality: Through the new looking glass.
Windcrest/McGraw-Hill, Blue Ridge Summit, PA, 1994.

A.S. Rao. Means-end plan recognition: Towards a theory of reactive recognition. In
Proceedings of the International Conference on Knowledge Representation and Reasoning
(KR-94),1994.

A. S. Rao and G. Murray. Multi-agent mental-state recognition and its application to air-
combat modelling. In Proceedings of the Workshop on Distributed Artificial Intelligence
(DAI-94). Menlo Park, Calif.: AAAI press, Technical report WS-94-02, 1994.

P. S. Rosenbloom, J. E. Laird, A. Newell, , and R. McCarl. A preliminary analysis of the
soar architecture as a basis for general intelligence. Artificial Intelligence, 47(1-3):289-325,
1991.

F. Song and R. Cohen. Temporal reasoning during plan recognition. In Proceedings of the
National Conference on Artificial Intelligence. Menlo Park, Calif.: AAAI press, 1991.

The DIS steering committee. The dis vision: A map to the future of distributed simulation.
Technical Report IST-SP-94-01, Institute for simulation and training, University of Central
Florida, Orlando, May 1994.

M. Tambe. Recursive agent and agent-group tracking in a real-time dynamic environment.
In Proceedings of the International Conference on Multi-agent systems (ICMAS), 1995.

M. Tambe, W.L. Johnson, R. Jones, F Koss, J. E. Laird, P.S. Rosenbloom, and
K. Schwamb. Intelligent agents for interactive simulation environments. Al Magazine,
16(1), Spring 1995.

M. Tambe and P.S. Rosenbloom. Event tracking in a dynamic multi-agent
environment. Computational Intelligence, (To appear), 1995. WWW:  http:
/fwww.isi.edu/soar/tambe/event.html.

M. Tambe and P. S. Rosenbloom. RESC: An approach for real-time, dynamic agent tracking.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 1995.
M. Tambe, K. Schwamb, and P. S. Rosenbloom. Building intelligent pilots for simulated
rotary wing aircraft. In Proceedings of the Fifth Conference on Computer Generated Forces
and Behavioral Representation, May 1995.

J. A. Thorpe, J. E. Shiflett, G. W. Bloedom, M. F. Hayes, and D. C. Miller. The simnet
network and protocols. Technical Report 7102, BBN systems and technologies corporation,
July 1989.

J. Vidal and E.Durfee. Recursive agent modeling using limited rationality. In
M. Wooldridge, J. Muller, and M. Tambe, editors, Intelligent Agents, Vol Il — Proceedings
of the 1995 workshop on Agent theories, Architectures and Languages (ATAL-95), Lectures
Notes in Articificial Intelligence. Springer-Verlag, Heidelberg, 1996. (In this volume).

B. Ward. ET-Soar: Toward an ITS for Theory-Based Representations. PhD thesis, School of
Computer Science, Carnegie Mellon Univ., 1991.

B. Webber and N. Badler. Virtual interactive collaborators for simulation and training. In
Proceedings of the Conference on Computer Generated Forces and Behavioral Representa-
tion. Orlando, Florida: Institute for Simulation and Training, University of Central Florida,
May 1993.

This article was processed using the I&IgX macro package with LLNCS style



